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Abstract

In a time dominated by the effects of the COVID-19 global pandemic, disease models become an in-

valuable tool to model the behavior and progression of infectious diseases. This thesis will investigate

a simple SIR disease model stratified by age to see how the adjustment of variables affects the peak

infected population. The thesis will further analyze the impacts of quarantining and vaccination on

peak hospitalization rates. The thesis will also analyze contact matrices and how various contact pat-

terns affect the overall pattern of an outbreak. The model will further investigate how the differences

in hospitalization rates among age groups affects the overall peak hospitalization rates. The results of

the model simulations suggest that the most effective treatment is to the group that interacts the most

proportionally compared to other groups. The results also show a large relative effect in lowering the

peak hospitalization rate when vaccination treatment is applied to the more at-risk groups.
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1 Introduction

In a time dominated by the effects of the COVID-19 global pandemic, it becomes a necessity to inves-

tigate the behavior of infectious diseases with models. A simple way to depict such behavior is through

disease modelling. This thesis will investigate a simple SIR disease model stratified by age to see how

the adjustment of variables affects the peak infected and hospitalized population. The thesis will further

analyze the impacts of quarantining and vaccination on peak hospitalization rates.

2 Background

In this section, we will go over the necessary background information for this thesis. The main topic

will be the disease model and the basics of COVID-19. We will also discuss age structuring a disease

model.

2.1 SIR Models

A SIR model is a type of Markov model where every component observation of the model is part of a

compartment. A SIR model assumes that the population can be divided into 3 categories: “S”, “I”, and

“R”. The “S”, or susceptible, compartment represents the section of the population who lack immunity

to the disease and are thus susceptible to infection. The “I”, or infected, compartment represents the

section of the population who are currently infected or actively spreading the disease. The “R” com-

partment is the section of the population who have recovered or are otherwise resistant to the disease.

The SIR model makes some crucial assumptions that must be noted. An SIR model assumes that

the population, denoted N, is constant and normalized to be equal to 1 so all population states will be a

percentage of the whole. The total sub populations will be denoted as Y for young, M for middle-aged,

and O for elderly. The notation in the model will be of the form Syt which in this case denotes the

susceptible population in the “young” subgroup at time t. It is assumed that the R category consists of

people who are vaccinated [12], have been infected and recovered, as well as those who have died from

the disease. SIR models assume that reinfection is impossible or improbable for the given time period.

It is assumed that the model is deterministic, which works for a normal outbreak, but is not as accurate
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when the number of infected is low and those periods a more stochastic approach would be necessary.

It is also assumed that the spread of disease is caused by uniform, random contact between a susceptible

individual and an infected individual.

It may be useful to define the parameters the SIR model utilizes. The parameter γ represents the

recovery rate in which infected individuals move into the recovered category. β is the parameter that

represents the transmission rate of the disease. This dictates the rate that infected individuals spread the

disease and cause new infections.

It may be valuable to consider that due to the nature of infectious diseases we can make some fur-

ther assumptions. In a virus like COVID-19, the recovery rate γ is something that should be assumed

constant and as something that people are not able to control. [1]

The initial conditions of the model assume that the percentage of S is a large proportion. There is

also a small percentage of I to represent the starting number of infected individuals. The R population

is considered to be very small or zero given few people should be resistant at the start of an outbreak

without vaccinations. The most critical factor measured in SIR Models is the peak percentage infected

at any given time as too high of a percentage will cause medical and health services to be overloaded.

We note that it is possible to simulate vaccinations by simply considering that population as part of the

“recovered” if we assume that they will not become infected or spread the disease in any way.

The basic formulation of a discrete SIR Model is:

St+1 = St − βItSt

It+1 = It + βItSt − γIt

Rt+1 = Rt + γIt

These formulas show the population for each of the compartments in the next period given the values

of the compartments in the current period.

As seen in the figure, the susceptible population follows a decreasing s-curve and the recovered
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Figure 1: A Basic SIR Model

population follows an increasing s-curve. The R population is offset to the S population by a few

time units and is predominantly impacted by the recovery rate. The I population appears as a skewed

bell curve. It increases in proportion to the transmission rate and the percentage of the population in

the S compartment. As β increases, the peak total infected population increases and the time to peak

decreases. A higher β in effect causes shorter and more severe outfits. If γ is larger than β, the infection

will quickly end as the I population will decrease faster than the S population can be infected.

2.2 The Basic Reproductive Number

The Basic Reproductive Number, or R0, is a critical parameter of an infectious disease. The R0 of a

disease represents the average number of new infections caused by a single infected individual. [11] For

a disease to perpetuate and cause a pandemic we must have R0 > 1. If R0 < 1, the disease will die out

and end the pandemic.[6] The R0 of a disease modeled by a SIR approach equals the ratio between the

transmission rate and the recovery rate βt/γ.

2.3 Age Structuring an SIR Model

The normalization of the population into percentages has the advantage that the population can be split

into subsections. Each of these subsections can then be made into their own separate SIR model. The
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value of this approach is that there may be differences in the subsections that have a significant impact

on the results of the model.[10] Each of the subsections intermix and therefore are not completely in-

dependent of each other. In order to account for this, it becomes necessary to add interaction terms for

each of the separate SIR models.

In order to create the interaction terms for cross infections among the subsections, a contact matrix

must be created.[7] The contact matrix will be the number of individuals that interact with members of

another subsection. For the sake of simplicity, we will divide the population into 3 broad categories of

“young”, “middle-aged”, and “old”.

The contact matrix will be of the form:

Cy Cm Co

Cy Cyy Cym Cyo

Cm Cmy Cmm Cmo

Co Coy Com Coo

The symbols in the contact matrix represent contact between different age groups. The symbol Cym

represents the interaction young people have with middle-aged individuals. We will assume that there is

no symmetry or reciprocity in the values of the contact matrix. The interaction young people have with

middle-aged individuals is not the same as the interaction middle-aged people have with young people,

i.e. Cym ̸= Cmy.

With the contact matrix defined, we can define the discrete formulation of an SIR model with 3

categories.

Syt+1 = Syt − β(IytCyy + ImtCym + IotCyo)Syt

Smt+1 = Smt − β(IytCmy + ImtCmm + IotCmo)Smt

Sot+1 = Sot − β(IytCoy + ImtCom + IotCoo)Sot

Iyt+1 = Iyt + β(IytCyy + ImtCym + IotCyo)Syt − γyIyt
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Imt+1 = Imt + β(IytCyy + ImtCym + IotCyo)Smt − γmImt

Iot+1 = Iot + β(IytCyy + ImtCym + IotCyo)Sot − γoIot

Ryt+1 = Ryt + γyIyt

Rmt+1 = Rmt + γmImt

Rot+1 = Rot + γoIot

The S equations can be described as the population of the susceptible percentage for a group sub-

tracted by the interaction of those susceptible individuals by all infected individuals scaled by interaction

weights. The I equations are the previous I percentage plus the new infected individuals due to interac-

tions between susceptible and infected individuals minus the infected who recovered between periods.

The R equations are simply the previous R percentage plus the newly recovered individuals for a given

age group. The primary difference these formulas have with the standard SIR formula is the I term. The

I terms are replaced by a weighted average of the infected populations with the weights given by the

contact matrix. The other S and R terms are the values for each subgroup.

I have included terms such as γo as it may be possible for different age groups to have slightly dif-

ferent recovery rates. I have not given this treatment to β to preserve simplicity and quarantining among

age groups may be a better control. I will also assume that all of the γ terms are equivalent for the

simulations as it is not a variable that people could control for in a realistic scenario.

The contact matrix allows for a mathematical representation of quarantining to be included. Further,

the effects of quarantining on specific age groups can be analyzed. This can be performed by multiply-

ing an age group by a factor in the contact matrix to simulate the change in contact between individuals

among that age category.

Within an age-structured SIR model, R0 is represented by the ratio of the transmission rate and the

recovery rate multiplied by the dominant eigenvalue of the contact matrix, or λc. The other eigenvalues

relate to the other groups within the simulation and can be used to analyze individual population behav-

ior to an extent.[8]
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R0 = λc
β

γ

2.4 COVID-19

The disease that this paper will strive to analyze and model is the COVID-19 pandemic. The Coron-

avirus Disease 2019, or COVID-19, was first reported in Wuhan, China in February of 2020. The virus

was initially given multiple names such as 2019-nCov and was later given the official identifier, SARS-

CoV-2. Following the initial outbreak in Wuhan, the disease quickly spread around the world and was

declared a pandemic by the World Health Organization on March 11, 2020.[5]

COVID-19 is primarily transmitted by droplets from the respiratory systems of two individuals. The

Airborne nature of the virus makes it especially virulent and exacerbated the pandemic. This property

also indicates that social distancing, quarantining, and mask mandates to have significant effects on the

spread of the disease. Though the disease is extremely infectious, the majority of the cases are shown

to be asymptomatic. The asymptomatic individuals are also shown to still be capable of transmitting

the virus. Common symptoms of COVID-19 are fever, coughs, shortness of breath, fatigue, headaches,

loss of taste or smell, nausea, vomiting, diarrhea, congestion or runny nose, and muscle or body aches.

The severity of the disease has also been shown to be directly correlated to conditions of the host such

as age, sex, and health.

Most cases of COVID-19 tend to involve the lungs. The most severe cases of the illness tend to

be found among elderly as well as very young individuals. Among hospitalized patients, complications

such as pneumonia, sepsis, respiratory failure, and acute respiratory distress syndrome.

It is useful to assess COVID in terms of age groups as different age groups as the disease impacts

different age groups with varying degrees of severity. The Hospitalization rate for elderly individuals

is 5 to 10 times larger than the rate for individuals in the 18–29 age group. The death rate is also

significantly higher with rates 65 to 370 times that of the 18–29 year group. Using CDC cumulative

hospitalization rates[4], the elderly population has a hospitalization rate of approximately 2%. Taking
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the average of the normalized rates for other age groups, we get an approximate hospitalization rate for

the young group of 0.15% and a rate of 0.64% for the middle-aged population. The rates were calculated

by taking the simple average of each of the cumulative hospitalizations per 100,000 people for each of

the age groups that make up each of the models three age categories.

2.5 Vaccines

In the United States, there are three main vaccines to prevent COVID-19. These are the Pfizer-BioNTech,

Moderna, and Johnson and Johnson vaccines.[2]

The Pfizer vaccine is recommended for people aged 5 and older while the Moderna and Johnson and

Johnson vaccines are only intended for individuals 18 and older. The Pfizer and Moderna vaccines both

require two doses for full immunity with each does administered 3 and 4 weeks apart respectively. The

Johnson and Johnson vaccine only requires one dose to be considered fully vaccinated. Individuals can

be considered fully vaccinated two weeks after their final dose.

The vaccines work by preparing the body for pathogens by increasing familiarity with the pathogen

so that the immune response is much faster and more efficient. There are two main types of vaccines

currently being administered for COVID-19. The first type are mRNA vaccines such as the Pfizer and

Moderna vaccines. The second type are Viral Vector Vaccines such as the Johnson and Johnson vac-

cine. The mRNA vaccines enter the body and mimic the COVID-19 virus’ proteins and cause a similar

immune response. The subsequent response effectively trains the body how to fight the disease and the

body can produce an immune response to an actual infection effectively. Viral Vector Vaccines work by

injecting a harmless virus into the body to create proteins similar to that of COVID-19. This causes a

similar immune response as seen in the mRNA vaccines and prepare the body for an actual COVID-19

infection.

As of November 2021, the CDC state that some 73.4% of the population above the age of 5 has had

at least one dose of a vaccine administered.[3] It is estimated that 86.2% of the population older than

65 are fully vaccinated. Further, 70.8% of the population older than 18 and 59% of the total population
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are fully vaccinated. The vaccines are allocated primarily to the older section of the population. The

vaccines were than distributed to younger individuals who worked in occupations where the risk of

infection was much greater. The vaccine was then distributed among the younger subsections of the

population.

3 Model Analysis

In this section we will analyze the initial conditions and scenarios for the model. We will go into further

detail on the contact patterns of the model.

3.1 Model Parameters

With the information laid out, a model can be created and tested. The model was created in Microsoft

Excel and calculated by following the discrete variables over 100 periods. The initial conditions of the

model will be set to γ = 0.1, β = 0.6, and thus a R0 = 6. We will assume that contact matrix is

uniform with all values set to 0.33. We will also assume that γ = γy = γm = γo.

According to US Census data from 2019[9], 31.7% of the population is less than 24 years old and

will be categorized as “young”. Another 52% of the population is between the age of 25 and 64 and will

be categorized as “middle-aged”. The final 16.3% of the population will be categorized as “old”. Of

these populations, we will assume 1/300 of the total population will be infected in each age group. The

other initial values are determined by the formulas S0 = (1− V ) ∗ P − 1/300 and R0 = V ∗ P where

V is the percentage of the population vaccinated and P is the population of that group. In a scenario

with each of the age categories with 50% vaccination we will have the initial values:

The main value we will be measuring is the peak infected population and the time until this peak.

This is as if the peak population is too large, hospitals will be overwhelmed and cannot treat all individ-

uals with serious cases. Therefore this is an important value to control for when searching for effective

responses and controls to the pandemic. We will also analyze vaccination effects by adding population

to the recovered compartment at the onset of the model.
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Sy 15.52%

Sm 25.67%

So 7.82%

Iy 0.33%

Im 0.33%

Io 0.33%

Ry 15.85%

Rm 26.00%

Ro 8.15%

From peak infected population we can approximate the peak hospitalization rate given the hos-

pitalization rates of each age group we approximated from CDC data. This can be found by sim-

ply multiplying the peak infected population of each age group by their respective rate. This will

return the percentage of the total population that is expected to be hospitalized at the highest pos-

sible point. If we calculate without respect to time, we will get an overestimate of the actual rate

as the peaks for each age group do not necessarily occur at the same time. The formula will be

H = Max(y)hy +Max(m)hm +Max(o)ho.

Another aspect we will analyze is how different subgroups interact with one another. These inter-

actions will be determined by the contact matrix. The values in this matrix will allow us to model the

behavior of each population such as quarantining or lack thereof. The rows of each contact matrix will

not sum to be more than 1. Decreasing the values of each row in the contact matrix is tantamount to

lowering β for each age group.

The parameter values used in the model will be:
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β 0.6

γ 0.1

qy 1

qm 1

qo 1

vy 0

vm 0

vo 0

hy 0.0015

hm 0.0064

ho 0.02

py 0.317

pm 0.52

po 0.163

3.2 No Contact

An important fact to consider before analyzing the effects of the contact matrix is to analyze a model

with no contact between age groups. This effectively creates 3 separate SIR models that are completely

independent of each other. The contact matrix for this scenario is just an identity matrix.

Cy Cm Co

Cy 1 0 0

Cm 0 1 0

Co 0 0 1

We get peak infected populations and times at 4.60% at time 48, 17.15% at time 30, and a peak of

0.33%, the initial condition time 1 for young, middle-aged, and elderly populations respectively. The

max infected is 20.33% at time 31. The max hospitalizations are 0.12%.

This scenario shows that in a case with a lack of interaction each model is independent of each

other and the effects of the other parameters is scaled to the new population proportions. The size of

the elderly population also caused β to become smaller than γ and thus the infection quickly died out

among that age group.
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Figure 2: No Contact Model: Total Infected Population

Figure 3: No Contact Model: Total Infected Population by Age Category

This scenario in the overall infection curve heavily resembles a basic SIR model. The lack of con-

tact effectively acts as a quarantine that directly scales down β as the subgroups not interacting heavily

stifles the spread of the disease. In a sense, each of the individual subgroups is its own SIR model,

though the scaling down of the population for each group has a large impact on each of the curves.
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3.3 Uniform Contact

The initial distribution of the population will assume that there are no recovered or immunized indi-

viduals and that 0.33% of the total population will be infected for each age category at the start of the

simulation. The remaining majority of the population will be placed in the susceptible compartment.

Cy Cm Co

Cy 0.33 0.33 0.33

Cm 0.33 0.33 0.33

Co 0.33 0.33 0.33

With the base parameters set, we can find a control model to compare the other results to.

Figure 4: Uniform Contact Model: Total Infected Population

The control model returns a total max infected population of 15.87% and a time to reach peak of 47.

The peak infected population for the subgroups was 5.03%, 8.03%, and 2.56% for the young, middle-

aged, and old age groups respectively. The max hospitalizations were 0.11%

The time to peak remained constant for each subgroup. These values will serve as baseline to con-

sider the effects of adjustments to different variables.
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Figure 5: Uniform Contact Model: Total Infected Population by Age Category

An interesting point about the uniform contact is that all of the infection curves have the same center

and move at proportional rates to each other without any controls applied to them.

3.4 Group Preference Contact

We will first analyze the effects of changing the contact matrix to encourage a preference towards the

same subgroup by adding a value of 0.66 to individuals within the same group and a value of 0.17 to

those outside the subgroup.

Cy Cm Co

Cy 0.66 0.17 0.17

Cm 0.17 0.66 0.17

Co 0.17 0.17 0.66

The in-group preference led to larger peaks overall as well as a faster progression of the infection.

The peak infected population was 19.76% with a time to peak of 40. The peaks for young, middle-aged,
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Figure 6: Control Model: Total Infected Population

Figure 7: Control Model: Total Infected Population by Age

and old respectively are 5.76%, 11.79%, and 2.44% with times of 43, 39, and 44. The max hospitaliza-

tions are 0.13%.

The preference towards in-groups led to the infection to progress relatively faster in the larger sub-

groups than in the smaller subgroups. While the peaks for the young and old groups increased, the

smaller elderly group’s peak infection decreased as the groups small size lessened contact acted effec-

tively as quarantining.
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This scenario is a bit of a blend in-between the no contact and uniform contact scenarios. Each

curve tends to follow the same near symmetric pattern of the uniform contact scenario with a slight right

skew. The time to peak is also offset with the larger subgroups peaking faster than the smaller subgroups.

It will now be useful to lay out the control scenario response values in a table to easily compare

the values. These will be useful for comparing variations due to different quarantine and vaccination

scenarios.

Max(I) Max(Iy) Max(Im) Max(Io) H

No Contact 20.33% 4.60% 17.15% 0.33% 0.12%

Uniform Contact 15.87% 5.03% 8.03% 2.56% 0.11%

Preferential Contact 19.76% 5.76% 11.79% 2.44% 0.13%

4 Quarantining

In this section we will apply a quarantine treatment to our model. We will run simulations on each of

the contact patterns and analyze their effects.

4.1 Scenario Introduction

To model the effectiveness of quarantining, we will scale down individual rows of the contact matrix by

a factor to get a lower value. If universally applied it would simply scale down the entire model. We

will also assume a lack of reciprocity in the contact matrix in quarantining. The logic behind this is that

one age group may be taking active measures to avoid contact but individuals from the other group may

not avoid contact at the same rate. In some of the following simulations, we will assume a total lack of

reciprocity for the sake of testing and others will account for some reciprocity.

We will assume the population is quarantining to varying levels of efficiency based on age group.

We will product the quarantine effect by applying a scalar of 1− efficiency to the contact matrix of each

group. These values will be labelled as qy, qm, and qo.
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The values of the contact matrices will be modified as follows:

Cy Cm Co

Cy qyCyy qyCym qyCyo

Cm qmCmy qmCmm qmCmo

Co qoCoy qoCom qoCoo

4.2 No Contact Scenario

The trivial “No Contact” scenario is not all that interesting. As the different age groups do not interact

with one another, the curves for each age group is simply scaled down by a factor. Something to note is

that the initial infected population for each age category is 0.33% and if that is the maximum then the

infection simply decayed from its initial value. The following simulations will be variations of the no

contact control simulation where the quarantine efficiency for each age group will be set to 0.5 and then

a final simulation where all of the efficiencies will be set to 0.5. The values of the simulations are as

follows:

Max(I) Max(Iy) Max(Im) Max(Io) H

No Contact Control 20.33% 4.60% 17.15% 0.33% 0.123%

.5qy 17.70% 0.33% 17.15% 0.33% 0.117%

.5qm 7.94% 4.60% 4.12% 0.33% 0.040%

.5qo 20.13% 4.60% 17.15% 0.33% 0.123%

All .5 4.31% 0.33% 4.12% 0.33% 0.034%

Across these simulations, the most notable scenarios were when all groups were quarantining and

middle-aged people quarantined. This effect is due to the effect of group size on the model in the no

contact scenario, where larger groups tended to have more severe outbreaks than smaller groups. This

effect also caused the quarantine to have no noticeable effect on the elderly population as the isolation

due to the contact matrix was already effectively quarantining the population.
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Figure 8: All 0.5 Model: Total Infected Population

Figure 9: All 0.5: Total Infected Population by Age

4.3 Uniform Contact

While the no contact scenario gave useful insight into the behavior of the model, it is not realistic

for there to be zero contact between different age groups. Furthermore we shall investigate the other

extreme, where every group interacts equally with one another to see the impacts to our parameters. We

will run simulations on the Uniform Contact Control Model and apply an efficiency of 0.5 for each of

the age groups and then a combined model where all groups are given a quarantine efficiency of 0.5.
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Max(I) Max(Iy) Max(Im) Max(Io) H

Uniform Contact Control 15.87% 5.02% 8.28% 2.56% 0.112%

.5qy 9.54% 2.15% 5.68% 1.75% 0.075%

.5qm 5.91% 2.38% 2.35% 1.21% 0.043%

.5qo 12.56% 4.24% 6.98% 1.37% 0.078%

All .5 1.00% 0.33% 0.47% 0.33% 0.010%

Figure 10: qm = 0.5 Model: Total Infected Population

Figure 11: qm = 0.5 Model: Total Infected Population by Age

There are some interesting results from these simulations. The max infected for the elderly popu-

lation was lower in the scenario where middle-aged people quarantined than in the scenario where the

elderly quarantined. This shows an effect where the larger the proportion of the population is quaran-
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tining, the severity of the outbreak is smaller.

4.4 Group Preference Scenario

It is also very unlikely that people from different age groups interact equally. Therefore, it may be

productive to analyze a scenario with reduced contact among out groups with a preference for people of

the same age. The contact matrix will be the uniform matrix with in-groups multiplied by a factor of 2

and out-groups multiplied by a factor of 0.5. Much like earlier simulations, we will apply a quarantine

efficiency of 0.5 to each and then to all of the age groups contacts. We will also than include another

scenario where we assume the more at risk groups quarantine with greater efficiency than other groups.

We will assume for this simulation that qy = 0.7, qm = 0.5, and qo = 0.2.

Max(I) Max(Iy) Max(Im) Max(Io) H

Group Preference Control 19.80% 5.76% 11.79% 2.45% 0.133%

.5qy 14.67% 2.46% 10.57% 2.01% 0.112%

.5qm 7.17% 3.05% 3.06% 1.16% 0.047%

.5qo 17.83% 5.46% 11.35% 1.25% 0.106%

All .5 1.56% 0.38% 1.02% 0.33% 0.014%

Varying Efficiency 2.23% 0.87% 1.34% 0.33% 0.017%

Figure 12: Combined Model: Total Infected Population
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Figure 13: Combined Model: Total Infected Population by Age

These simulations grant additional insights to those seen in the uniform contact simulations. While

the effect from population size was not as pronounced, it still provided significant impact on the spread

of the disease. With these insights it is possible to state that larger proportions of the population quar-

antining have a larger effect than individual groups quarantining more efficiently. It is reasonable to

conclude that it is more effective for the entire population to quarantine rather than a single at risk group

quarantine.

5 Vaccinations

In this section we will apply a vaccination treatment to each of the models and analyze its effect. We

will do this for each of the contact patterns.

5.1 Model Conditions

The main modification to the age structured SIR Model we have been using that we will use to account

for vaccinations is to assume the vaccinated populated are completely immune and are already in the R

compartment at the beginning of the simulation. We will effect the vaccination across one of each of the

age groups and then all of them in subsequent simulations for each of the three contact types we have

discussed. The initial values of each category will be determined by the formulas such as: I0 = 1/300,
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S0 = Population ∗ (1− V )− 1/300, and R0 = Population ∗ V .

5.2 No Contact

The No Contact model where it is effectively three separate SIR models was earlier shown as a good

way to assess how the parameter effects the output in isolation. This scenario also has the benefit of

showing the effects of population size relative to other groups has on the outcome.

Max(I) Max(Iy) Max(Im) Max(Io) H

No Contact Control 20.33% 4.60% 17.15% 0.33% 0.123%

.5vy 17.68% 0.33% 17.15% 0.33% 0.117%

.5vm 6.87% 4.60% 2.17% 0.33% 0.027%

.5vo 20.12% 4.60% 17.15% 0.33% 0.123%

All .5 2.36% 0.33% 2.17% 0.33% 0.021%

Figure 14: .5 V All Model: Total Infected Population

The results are very similar to those of the no contact quarantine simulations. The vaccination

scenario does show greater efficacy overall to the quarantine scenario as the total infected was slightly

less than or equal to the values under the quarantine scenario with the hospitalization values also be less

than or equal to the quarantine results. Likewise, the results also show the same effect that treatment to

larger population groups results in lower overall infections and hospitalizations.
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Figure 15: .5 V All Model: Total Infected Population by Age

5.3 Uniform Contact

For the same reasons stated in the quarantine section, we will proceed to run the same simulations on a

uniform contact model.

Max(I) Max(Iy) Max(Im) Max(Io) H

Uniform Contact Control 15.87% 5.02% 8.28% 2.56% 0.112%

.5vy 8.62% 1.61% 5.35% 1.66% 0.070%

.5vm 4.96% 2.13% 1.74% 1.08% 0.036%

.5vo 11.94% 4.12% 6.79% 1.03% 0.070%

All .5 1.00% 0.33% 0.45% 0.33% 0.010%

The results look very similar to that of the quarantine results. A key difference is that the middle-

aged infection curve is effectively scaled down instead of flattened like it was in the quarantine scenario.

The resulting graphs show a trend where the control graphs curves are scaled down to the point where

they cause the local R0 to be less than 1 and the infection dies off. The effects of vaccinations appear

to be more pronounced than those of quarantining though the values used are arbitrary and might not be

the ideal for comparing the two treatments.
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Figure 16: vm = 0.5 Model: Total Infected Population

Figure 17: vm = 0.5 Model: Total Infected Population by Age

5.4 Preferential Contact

We will again move to the preferential contact model as our control as we assess the effects of vaccina-

tion as we adjust contact. We will run the four simulations where we adjust one of each variables to be

equal to 0.5 and then all of the vaccination variables to be 0.5. For a pointlessly complex simulation we

will add an additional simulation to show varying vaccination rates and analyze the effects therein. For

this we will use the values vy = 0.3, vm = 0.5, and vo = 0.8.
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Max(I) Max(Iy) Max(Im) Max(Io) H

Group Preference Control 19.80% 5.76% 11.79% 2.45% 0.133%

.5vy 14.19% 1.91% 10.51% 1.98% 0.110%

.5vm 5.96% 2.87% 2.06% 1.04% 0.038%

.5vo 17.59% 5.43% 11.32% 1.00% 0.101%

All .5 1.14% 0.33% 0.74% 0.33% 0.012%

Varying Efficiency 1.59% 0.64% 0.89% 0.33% 0.013%

Figure 18: Preferential Contact with varying Vaccinations: Total Infected Population

Figure 19: Preferential Contact with varying Vaccinations: Total Infected Population by Age

These results reinforce the results and conclusions seen in the quarantine results. The results are

very similar to that of the uniform contact simulations. The overall efficacy of the vaccine treatment on
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a single group is not as large as it was in the uniform contact simulations.

6 Conclusions

In this section we will go over a broad analysis of the results of the simulations. Further we will

investigate the issues which arose during the creation of this thesis as well. Finally we will look into the

interesting potential future research that can be done on this topic.

6.1 General Conclusions

Max(I) H

No Contact Control 20.33% 0.123%

.5qo 20.13% 0.123%

.5vo 20.12% 0.123%

.5qy 17.70% 0.117%

.5vy 17.68% 0.117%

.5qm 7.94% 0.040%

All q = .5 4.31% 0.034%

.5vm 6.87% 0.027%

All v = .5 2.36% 0.021%

Max(I) H

Uniform Contact Control 15.87% 0.112%

.5qo 12.56% 0.078%

.5qy 9.54% 0.075%

.5vo 11.94% 0.070%

.5vy 8.62% 0.070%

.5qm 5.91% 0.043%

.5vm 4.96% 0.036%

All q = .5 1.00% 0.010%

All v = .5 1.00% 0.010%

The results of the simulations give us insight in how to best address an infectious disease such as

COVID-19. The key takeaway is that as interaction becomes more equalized across the subgroups of the

population, quarantining needs to be practiced by all members of the population and all groups should
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Max(I) H

Group Preference Control 19.80% 0.133%

.5qy 14.67% 0.112%

.5vy 14.19% 0.110%

.5qo 17.83% 0.106%

.5vo 17.59% 0.101%

.5qm 7.17% 0.047%

.5vm 5.96% 0.038%

All q = .5 1.56% 0.014%

All v = .5 1.14% 0.012%

be vaccinated. The models show that large groups of people interacting with at risk people have a large

effect on at risk groups even if they are getting vaccinated and quarantining.

The less people interact with each other overall results in quicker, less severe outbreaks. By separat-

ing the population into separate groups, we can effectively lower the β and thus the R0 value to the point

that the outbreak will be contained through quarantining. There also exists a threshold where when each

of the groups exceeds their local threshold, the disease will decay and the disease will not spread.

The groups to focus treatments on can be summarized as those who are at highest risk of hospitaliza-

tion as well as those who have the highest interactions total relative to their proportion of the population.

In the scenarios where we assume contact was uniform, the effective contact values are not uniform as

they are all scaled by the relative sizes of each of the age categories. The middle-aged category having

a population percentage of 52% meant that any treatment applied to the entire group had a much larger

effect than to the other groups.

6.2 Issues and Future Work

The structure of this model is versatile and can be extrapolated to other subgroups of the population. It

is possible to create separate subgroups for variables such as race, general health, occupation, or any

combination of variables. The ensuing model could provide further insight on how to allocate resources

to more at risk groups or mitigate the spread of diseases among “Super Spreaders”.
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A key failing of this model is its simplicity. SIR Models make a lot of large assumptions that do not

always hold true. SIR Models do not take into account the possibility of reinfection nor intermediary

states of disease progression. It is possible to create models with Exposed, Hospitalized, or Vaccinated

compartments. The model also ignores births, deaths, and migration which can cause the population

within the system to change. Another failing is the deterministic approach to the spread of disease when

a more stochastic approach may be appropriate.

This thesis was unable to cover other factors do to either a lack of time or data. A question I contin-

ually asked myself during the creation of this thesis is how the local R0 would be calculated and what

kind of function it would be. I also would have liked to have better data for the model itself to use rather

than the generalizations of the overall US population and rough approximations of other parameters.

I would have like to go into a deeper analysis of eigenvalues and their impact on the results. My

research suggested that the non-dominant eigenvalues could be used to predict the behavior of the sub-

groups. It would give valuable insights to further investigate these in the future as it could lead to a

solution for the formulation of the local R0 values.
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7 Appendix

For the sake of replication, I will give my model.

Figure 20: SIR model Excel sheet

• The initial values for Sm are ”=0.52*(1-B30)-J3”.

• The initial values for So are ”=0.163*(1-B31)-K3”.

• The initial values for Iy, Im, and Io are ”=0.01/3”.

• The initial values for Ry are ”=0.317*B29”.

• The initial values for Rm are ”=0.52*B30”.

• The initial values for Ro are ”=0.163*B31”.

• Itotal is just the sum of the I columns ”=SUM(I3:K3)”.

The first iteration (time 2) has the following formulas that are iterated over time.

• The formula for Sy is ”=F3-F3*($I3*$B$10+$J3*$C$10+$K3*$D$10)*$B$2”.
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• The formula for Sm is ”=G3-G3*($I3*$B$11+$J3*$C$11+$K3*$D$11)*$B$2”.

• The formula for So is ”=H3-H3*($I3*$B$12+$J3*$C$12+$K3*$D$12)*$B$2”.

• The formula for Iy is ”=I3+($I3*$B$10+$J3*$C$10+$K3*$D$10)*$B$2*F3-I3*$B$5”.

• The formula for Im is ”=J3+($I3*$B$11+$J3*$C$11+$K3*$D$11)*$B$2*G3-J3*$B$6”.

• The formula for Io is ”=K3+($I3*$B$12+$J3*$C$12+$K3*$D$12)*$B$2*H3-K3*$B$7”.

• The formula for Ry is ”=L3+$B$5*I3”.

• The formula for Rm is ”=M3+$B$6*J3”.

• The formula for Ro is ”=N3+$B$7*K3”.
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